CHAPTER TWENTY-TWO
22-17
When the two cells of Fig. 22E-3 are reconnected in parallel, the
voltages across them are equal. The current in each cell is then

inversely proportional to its internal resistance. Using the
subscripts Cu for copper and Ag for silver, we have

(1)

Using the notation of Section 22-1, the currents are related to
the charges transferred and kilomoles deposited in a time interval

t by
=
Y el Ycu fou o
cu t =
and
_%ag _ Yag "ag¥
ST, (3)
ag .t t

The masses deposited are given by Amcy = YcouMoy and Ampg

= ))A MAg’ where Mn,; and Mpg are the atomic weights of copper and
silveg. From egs. (2) and (3), we find the ratio of currents to
be given by

ICu & A)QCu-nCu et vCu (AmCu/MCu) (4)

Tag Vag Pag  Vag Alag™Mag

We have Yoy = 2, Pag = 1, Mo, = 63.54 kg/kmol and My
= 107.88 kg/kmol. 1In order to obtain equal mass depositions,
egs. (1) and (4) require that

ey

Ag

2 167.88Y. .
(1) ( 63.54) Al

The internal resistance of the silver cell should be 3.40 times
that of the copper cell.

d
h=d
H

Bl

22-18

The number density of valence electrons in solid silver is
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Y20 (1)(6.02 % 1028 /kmol) (1.05 x 10% kg/m’)
M 108 kg/kmol

R D

Therefore the charge density due to the valence electrons is

I/Gl = e = (585 x 16°0 m Ydeonix 152 ¢

D7 = 109 C/m3 (1)

The electron drift speed is given by
v, = .
7 TPl
: : =6 : :
With i = 2.4 A, a = 3.0 x 10 m , and [/Ol as given in eq. (1),
eq. (2) yields

(2)

v, = - —— = 8.54 x 10> m/s
(0.37 % 107) (3.0 x 10 )

22=1'9

We denote the initial and final diameters and lengths by d;, dy,
1r and 2, respectively. Since there is no change in volume,
we have Td7 {;/4 = a3 £,/4. With d; = 1.00 cm, dy = 0.100 cm,

and 1 = 1.00 m, we find that the final length is given by

q2 2
e 1.00 o
,?2 = ,@l 5= 1.00 m (0.100) = 100 m
d,

In terms of the conductivity ¢ of the metal, the rod's resistance
Ry = ‘Ql/(Trd%G‘/4). Since ¢ 1s assumed to remain constant during
the stretching, the resistance ratio is

B ﬁz/'rrdzcr)

2 2
2
1

L X /ma

L

,ﬂz/gﬁl _ (100/1.00)

2 2
(d2/dl) (0.100/1.00)

1.00 x 104

22-20

Since the wires are in series, they carry the same current:
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L i,. The current densities differ because of the unequal
cross—sectional areas:

S
Jq a

s T = 2
(11/31)

2

The resistances of the wires differ, even though both wires have
length and resistivity fD:

R (,o,ﬂ /a,)

=1
L D
a

Ry (/O'Q/al) 2

Therefore the potential differences across the two wires also
differ:

et e
Vl llRl Rl =

Finally, the electric fields are unequal:

E =(v2/ﬁ)=v_2=2

E (vl/g_) vl
22-21

We suppose that the resistive force on a charge carrier has the
form ?D = -bV, where b is a positive constant and v is the velocity
of the charge carrier. In the presence of an applied electric
field £ , each carrier wi}l thain a terminal ve%gcity ?E such

that Fp + g€ = -bvy + g€ = 0. That is, ¥y = g€/b. Letting N
denote the number density of charge carriers, the steady-state
current density is

quﬁj
b

— =
I NGRS =

This equation agrees with Eq. (22-31) provided that we set O
= qu/b, or b = qu/g'.

22=22

= —
(a) Applying Ohm's law withiE each wire, we have Eil = 3/ 073
= X(3/67) and £, =3/0, = X(3/03)-

(b) We apply Gauss' law to a right cylinder with end faces parallel
to and bracketing the interface at x = 0. We find that the surface
charge density Z on the interface must be
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- A -—
2= e 8= glux)
_ ¢ (L__J_ :ej(i __1_>
o Gé SR @ G, 61

& (1)

(c) If the charge layer has a finite thickness tS, the average
charge density within the layer is

55:3(6" )
S f)(x)dx e g L 2 (2)
& 6,0,

5~ 7
(d) wWith 1.0 x 107 mymif=elda = 10° a/m?, &4 = 1.8 %10 s/m
and &, = 5.65 x 107 S/m, we find that

Fj L (8L85 0 o )(1.0 x 10 yI(1.8 - 5.65) x 107)]
D 1o ) (1.t x 1D ) (5 65 % 100)

Loie a0 c/m3 (3)

(e) The average charge density FT = iﬁée, where-ﬁg is the average

excess number density of electrons. Using eqg. (3), we obtain

-P _3.35 x 10 o

e e 0 &

W -
e

1 -3
= 2.09 x 10 2 m

The number densities of atoms in the two wires are given by Ny
= /leA/Ml and N, = F%QA/Mz' Here /le and /sz are the mass
densities, M; and M, are the atomic weights, and A is szgadro s
number. For the tungsten wire, we have /Dnd = 1.93 x 10 kq/m
and M = 184 kg/kmol, so that
4 26
(1.93 x 10 ) (6.02 x 10 ) 28 -3

— = =G
N(W) = Nl 1o I 2 10 m

For the copper wire, we have fjmz = 8.94 x 103 kg/m and M,
= 63.5, so that

3 26
: . . 26 -
N(Cw) = N, = (G ég ;(6 L L i R

Therefore, the ratios of average excess electron number density to
number density of atoms are N] /N(W) = 3.31 x 10714 ana ! /N(Cu)
= 2.47 x 10-14,
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22-23

According to Eg. (22-43a), the conductivity is given by O

= Neg'?Yme, where N is the number density of conduction electrons
and T is the mean scattering time. Therefore the conductivity
ratio of two substances is 03/073 = (Nl’Pl/N2'P2). If the mean
scattering times are assumed to be equal, then J;/0 5 = N;j/Nj.

The number density of molecules is given by Ny = /OmA/M, where

is the mass density; M is the molecular weight, and A is Avogadro's

number. In copper (an excellent conductor), the number of con-
duction electrons for each molecule (atom) is about one: Ngyu/ (Ny)oy
= 1. The atomic number density in copper is

3 =1

() * (8.9 g/cm ) (6.02 x lO23 mole )
M’ Cu (63.5 g/mole)
2
= 8.44 x 10 2 atoms/cm3 (1)

Using copper as the standard, the relative number density of
conduction electrons in each of the other materials is given by

0 P

NCu GE

(2)

u

The number of conduction electrons per atom or molecule is given by
N
e

M
(NM) 2 §Cu cH P mzA

CjMCu LR )OmZA
(@2 > (P cu (Mz )
T M (3)
Cu f9m2 Cu

With the numerical values given in the exercise statement, egs. (2)
and (3) yield the values tabulated below.

Substance N/NCu N/NM

copper 1 1

iron Q7 0.17
silicon ety it 8 28 g B
glass 8.5 % 10_20 3.1 = 10_19
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The numerical value for copp
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6.4 x 1072 {)-cm/K

6.4 x 10711 () sm/K. The
numerical value for gold is
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8.0 x 10711 Nem/K. The
numerical value for iron is
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in the range 77-373 K. Notice, however, that unrealistic

(negative!) wvalues of foim are indicated. 1In the graph for iron,

a negative value (of relatively large magnitude) is indicated for
imp- Furthermore, the data point at 77 K is relatively far from

the line defined by the higher-temperature points, Evidently the

curve for iron exhibits considerable upward curvature between

77 K and 273 K.

22-25

VRS

(a) The forty cells in series have
a total emf of 40 x 2.2 = 88 V. As
shown in the figure at the right, —___THQJ¥3W
when the cells are being charged, “T” -
the positive terminal of the 2 6010
charging source is connected to e }lo v "‘i_—,JDV
the positive end of the series of TR S ;
batteries. Since the emf of the 26,000
source is 110 V, the wvoltage drop etiee
across the resistance of the
entire circuit is 110 - 88 = 22 V.
In order for the charging current 7: 2,20\
to be limited to 10 A, the total %:GOUL
registance of the circuit must be ] :
Rp. = {22 V)/(10 n) = 2.2 (). ‘The
total internal resistance of the cells is: Rlnt = (40) (0.0100)

= 0.40 (2. Since the cells are in series with the current- -limiting
re51sﬁ?§, we have Rp = Rine + R, so that R = Rqp - Rlnt 2.2 - 0.40
= 1,8

ATAVAVE

TawemE

(b} The power dlSSlpated in the current-limiting resistor is giwen
by Pp = i%R = (10)2(1.8) = 180 W.

{c) The power dissipated in the lnternal resistances of the forty
cells is given by Pi,i = 12R e = (10)2(0.4) = 40 W.

(d) The total emf of the cells is Vo = 88 V. The power delivered
to them is the useful power:

B, = iVC = (10) (88) = 880. W

Notice that B, + Bk Prods 1100 W, which is the total power

provided by a source of 10 A at 110 V.

22-26

¥
AN
We can redraw Fig. 22E-26 as the v
figure at the right, in which the - AAA 'R
resistors are obviously in parallel k | .
with one another. To establish QAAA

that the two apparently different
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circuits are equivalent, we simply observe that one end of each
resistor is connected to terminal A and the other end to terminal

B.

1 + L
R r

It

so that R

22=27

€

The circuit has been redrawn at
the right, with labels A, B, and

C for the three nodes in the
clrcudtog i Ly ig 1.00 A, then the

V__Lm

T

le

Hence Eq. (22-54a) implies that the resistance from A to B is

Ry= lo.c0 L
s

‘.,.__%
3

—_—
' 2‘9 = 5000}
LJT :

K =da0.0

voltage drop between A and B is
given by Vpap = 1 3R3 = (1.00 A)

% (10.00 (1) = 18.0 v. But Vag
= iRy, 80 iy = Vag/Rp = (10.0 V)/(5.00 L)L) = 2.00 A. Therefore
sy b ig + i3 =2.00A + 1.00 A =3.00A. Finally, applying the
loop rule to caBc, we find that V'= ijR; - i5Ry = 0, so that V
= i;Rj+ iyRy = (3.00 A)(3.00 (1) + (2.00 &) (5.00 {l) = 19.00 V.
22-28 350 A IO‘U.H_—
MA 2
The circuit is redrawn at the right, ;:L> JVV»
with arrows indicating the sign
convention used for the currents. 5@3V— Lm)v
We apply Kirchoff's loop rule _;_ 2.00 V
(voltage law) to the left-hand T_
loop of the circuit:
3.00 v = (3.002)i, + (2.00 e 2500 V=0
or
S o Lo T 1
31, - 24, 1 (1)

where the currents are measured in amperes.

Applied to the right-

hand loop, Kirchoff's voltage law yields:

2.00 V — (2.00._(7_)i2

or

3 il

2i2 + i

- (1.00.(1)13

- 1.00 V=0

(2)

Applying Kirchoff's node rule (current law) to the node at A yields

201
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Using eg. (3), we can eliminate i3 from eq. (2):

212 + (1l + 12) =1

or

i1 + 3i2 =1 (4)

Using eq. (4) to eliminate iy from eg. (1), we obtain
3(1 - 3ip) - 2ip =1, or i, = (2/11) A = 0.182 A. Then iy = 1 - 3i
= (5/11) A = 0.455 A, and i3 =1 - 2i2 = (7/11) A = 0.636 A.

2

22-29

Since P = V2/R, or R = V2/P, a 55-W bulb has twice the resistance

of a 110-W bulb when they are both operating at 110 V. (Since

the resistance of a 55-W bulb might well exhibit a temperature
dependence different from that of a 110-W bulb, we cannot make
definite comparisons of the resistances at other operating voltages.)
At any operating voltage, two identical 55-W bulbs have an effective
resistance equal to one-half that of a single 55-W bulb at the

same voltage. If the operating voltage is 110 V, the effective
resistance of the two 55-W bulbs in parallel equals the resistance
of one 110-W bulb. By arranging the bulbs as shown in the figure,
we have constructed a circuit equivalent to a series combination

of two 110-W bulbs. In such a circuit, each bulb operates at

110 V. (Obviocusly, it does not matter whether the single bulb

is adjacent to the positive terminal of the source -- as shown -- or

to the negative terminal.)
IMB

20N _— 5 5w bulb
ot S5 55-W bu

22-30

(a) We refer to Fig. 22E-30. With S open, the current in the

meter is'il. Since the meter reading does not change when S is
closed, the current in the meter is still il, which means that no
current is diverted from A to B (or vice versa) that is, the current
in AB is zero.

(b) Since there is zero current along the conducting path ASE,

the voltage drop must be zero: VAB = 0.
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(¢) Applying Kirchoff's voltage law to the left-hand loop, we
have 0 = iRy + Vap — i3R3 = ilRl - i,R3, so that

o e
L5 - 55 (1)

Applying the voltage law to the right-hand loop, we find O
= llRM = 12R4 + VAB = llRM - 12R4, so that

e (2

Dividing eq. (2) by eq. (1), we obtain

RM R4
= iR e
1 3
so that RM = RlR4/R3.

22-31
(a) Applying Kirchoff's voltage law to loop DHBXD, we obtain

s(Ap -v, =0 (1)

since the resistance of the portion DH of the uniform wire is,Aﬂx.

(b) Similarly, applying Kirchoff's voltage law to loop DHCSD, we
obtain

1Ay -v =0 (2)

(c) Since Vg is known, we can use egs. (1} and (2) to obtain a
proportion in which Vy is the only unknown quantity:

o 2l o

v K
(d) The voltages measured are emf's rather than terminal voltages
because the currents through the unknown and standard batteries

are zerc. There is no ohmic voltage drop across the internal
resistance in either battery.

(3)
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22-32

In a noninertial reference frame

rotating with the cylinder, there
is a centrifugal force acting on |
any particle not on the axis of
cylinder. For a particle of =

mass m located at displacement T |“§?euli>
from the axis of the cylinder s e
(as shown in the figure at the L/ i it
right), the centrifugal force is f

given by

—
2
B e} = o = il rr (1)
1

Any particle that moves with the cylinder must be subject to a

net force of zero 1n the rotatlnq frame, so a real (not fictitious)
centripetal force ~F' = -mw?2rt must also act on every particle

of the ecylinder. For the atomic nuclei and the tightly bound
electrons in the material of the cylinder, the centripetal forcé
is provided by neighboring atoms. (For a solid cylinder of normal
rigidity rotating at a reasonable rate, such forces are provided
at the expense of minuscule deviations from the normal size and
shape of the cylinder.) However, the conduction electrons are
mobile, and unless some other force cancels Fj, thoge electrons
would collect at the periphery of the cylinder (r = R). There isg
a very slight outward shift of the conduction electrofis when the
cylinder is started spinning. This outward drift ceases whén there
is an outward electric field E(r) = a{r)r stich that at each
location a conduction electron experiences zero net force in the
rotating frame. Using eq. (1), this happens when

0= -e 8(1‘) + Fé(r) = —eE(r); + m(;Ozr‘i":\ (2)

Therefore (E(r) = mUJQr/e, which implies that there is a poterntial
difference between the axis and radius r given by

—( 8 (r')e d;' = —m & (r'dr'
e o
3 0
L %(E) wr’ (3
e

Therefore the magnitude of the potential difference between the
axis and the periphery is

V(R) - v(o)] = %—(E).w‘ZRZ (4)

e

V(r) - V(0)

1l

as was to be shown. Equation (3) implies that the axis is at a
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positive potential with respect to the periphery. The prescriptions
for transforming the electric field and the electric potential from
one reference frame to another (when the frames are in relative
motion) have not been presented at this stage in the text. Here

we simply point out that if the relative speeds are much less than
the speed of light, we can adopt expressions (2) - (4) as also

valid in the "laboratory frame" {(in which the cylinder is spinning
with angular speed @). [NOTE: A completely acceptable alternative
solution can be constructed working entirely in the laboratory
frame. As long as WR<<c (so that magnetic effects are negligible),
the results are in complete agreement with egs. (2) - (4) above.]

22-33

p—_

(a) In the water, the current density-§ = G‘E:int' where éﬁint is
the true interior electric field (see Sec. 21-8). Referring to
Fig. 22E-33, the total current from the inner conductor to the
outer one is given by

A lemmr
i= {j'd}"?“—- &E- o da (1)
g’ 5

where S is a surface within the water that surrounds the inner
sphere. Since the water has dielectric constant K,=>1, a much
larger free charge g must be present on the inner sphere (in order
to maintain the given potential difference V of the source) than
there would be if the filler had a dielectric constant of unity.

In this situation, Gauss' law takes the form

2 = Keeo (8int. e (22
“J

S
Since g = C'V, where C' is the capacitance of the system with the

water present, eg. (2) yields

K e =
e“o -
Vo= —— d
v B ing Y (3)
S
Equatiens (1) and (3) imply that the resistance of the system is
& =
v "eTo
= - = —= 4
R ()

However, as described in the final paragraph of Chapter 21, the
capacitance C! = K,C, where C is the capacitance of the system in
the absence of the water. Therefore eqg. (3) becomes

v=§3g€ > da (5)

C int
S

and we can rewrite eqg. (4) as
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€o
R &

which was to be shown. [NOTE: A perfectly acceptable alternative
solution can be based on the recognition that (for a given potential
difference), the electric field has exactly the same form as it
would have with a vacuum between the spheres. One&advantage of the
solution given above is that we can see explicitly from eq. (4)

that the resistance egquals the inverse of the conductivity, times
the ratio of the permittivity (Kgo€,) to the capacitance C', no
matter what value the dielectric constant K, might have. Hopefully,
it helps to make clear that R depends only on the conductivity

of the filler and the geometrical arrangement of the "terminals",
and not at all on the dielectric constant of the filler.]

(b) Using eg. (6), we obtain

e S EE e Sl

gcC T 4T {;Orzrl 4T G r2rl

R

(7)

With the given numerical values, the resistance is
(0.10 - 0.05) m
4T0(1.0 x 10> 5/m(0.10 m) (0.050 m)

R =

I

796 L
29-34

As a matter of convenience and

also because the exercise statement
refers to the current flowing

from A to B, we suppose that the
positive terminal of the battery A +4%‘ 8 “l%]
is connected to sphere A. The \3
radius r of each sphere is much i CS{:)
smaller than the separation :

between their centers, as shown J »

in the figure at the right. F——————z-u_ _‘,4Q
o} .

{(a) Using the notation indicated in the figure, we calculate the
electric field along the line of centers. We are setting out to
determine the vacuum capacitance C, so we can neglect the earth
surrounding the spheres. Because {>>r, the charge distribution
on each sphere is not significantly affected by the charge on the
other sphere. Therefore each sphere's charge is uniformly dis-
tributed over its surface. Then the field between the spheres is
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A I ‘
) lat la]
Eels e o (1)
49T £ . (ﬂ— x)2

mrr<x<ﬁ~r

Therefore the potential difference is r

‘ = IQ|
%7, = 5T Sa - iy ek e S o [
A B EC ds AT E

5 lql 1 X=Y
4TTE (f.= %)
dy=f-r
o il ; gt 2 Lag 1
4E r 7 - r | i - (-
2 2ial Bl
e ( - r) (2)
be

Since an,r, eg. (2) can simplified:

gl

Ym Yw e TE X (sl
(b) By definition, C = |q|/lVA - Vgl » S0 eqg. (3) implies that
the vacuum capacitance of the system is C = 2TME o -
(c) Supposing that the result of Exercise 22-33 can be generalized,
we find

éo il
R e 2mior (4)

[NOTE: Strictly speaking, eq. (4) gives the resistance only when
the spheres are immersed in uniform conducting material that fills
all space. However, eq. (4) relates § and the measured resistance
R with reasonable accuracy provided that the spheres are buried

at a depth comparable to or greater than R,(and large compared to
r).]

(d) From eq. (4), we have § = 1/(27Rr).

22-35 = ___..____;..[

7
. G
The figure at the right illustrates b T: )
the situation. T _}_ Pl
—= —_— = Y-
(a) Symmetry considerations imply RATUR. Dok BasGES 5

that the current density j is
radial and has a magnitude
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— A -
depending only upon r: 3j(r) = j(r)r. The flux of J through a
cylinder of radius r coaxial with the resistor must equal the total
current:

i= gjeda‘ = j(x)« 27 rL
'l ¢ Therefore we have
= = i A

(1)

for ry< r<r2.

(b) sSince the material has conductivity O, the electric field
for rj<r <r, is given by

S e U i A
E(x) = Em?t = e (2)

(c) The potential difference is given by
i

Vite ) = Wil )k = iy de
1§
o bail
=§ 6 (r)> dr
0 G =
i dr i 2
"2ITG“L‘§ : i ron ln(r]-) (3)
q
Therefore the resistance is
'r
LIV g al =2
s e (rl> (4)

o
(d) WwWith E,(r) = 0 for r>r,, Gauss' law implies that the cylindri-
cal resistor has zero overall charge. For a coaxial cylindrical
surface of radius r>ry, we find
Est

e M i "
éo(geda = 60 (m) (21 rL) = T (5)

\!

AV
Since this is independent of r for r>ry, we can conclude (with
the help of Gauss' law) that the volume charge density is zero
within the filler material, and that the total charge on the inner
conductor is

€ ot

1 5 (6)

Q

The corresponding surface charge density is
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17 Zfel  2TE G Q)

Since the overall charge is zero and the filler has zero charge
density, the total charge on the outer conductor is

Q2 = AQl = T (8)
The corresponding surface charge density is
i
S e P e )
2 2Trr20'L

22-36

(a) The vapor is contained in a box 10 cm on a side, so the cross-
sectional area of the current-carrying region is a = 107 m“.
Assuming that the current density is uniform over the cross section,
the current is i = ja = o & a. But the electric field £ = AV/h,
where AV = 50 V and h = 0.1 m is the height of the chamber. There-

fore i = g (AV)a/h, or

G ._ih _ (Q.0x 10"°a) (0.1 m)
(AV)a (55 ) (0.01 m?)

2.0 % 10" S/m

(b) The mean scattering time is given by M= ‘A/Vrmsr where )\
is the mean free path. The rms thermal speed is given by

_ | 3kT
v =\l
rms m

where m is the mass of the molecule. The molecular weight of
methyl alcohol (CH40H) is 32, so m = é32 kg/kmol)
<+ (6,02 x 1026 kmol_l) = 5.32 X 10_2 kg. Thus, at a temperature
of 300 K the thermal speed is
-23
3(1.38 x 10 ) (300)

V., .= =
TREC (5.32 x 10 °%)

2
= 4.83 x 10 m/s

-5 =
Given a mean free path ,k = 1.0 x 10 ecm = 1.0 x 10 m, the mean

scattering time is

—7
T A Dol 100 me gl YT GTESHD

Vems 4.83 x lO2 n/s
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22-37

(a) The resistance per unit length of a homogeneous conductor of
conductivity O and cross-sectional area a is given by R/f = 1/Gg a.
Therefore the inner wire has resistance per unit length

R
e (1)

2
.ﬂ U&TTrl

while for the tubular conductor, we have

Lt 1 (2)

lr e 2 2
.i Géil(r2 = rl)

For the composite conductor the resistances add in parallel, so
Q Q. o 2 2

===+ == 07w+ : =

R AR 1 s P T

| sy

The resistance per unit length is

- L (3)

T 2 2
'mo-lri + 0y e

ol

(b) The voltage drop along the two conductors is the same, so
we have

T = ﬂ_ (4)
Because the conductors are in parallel, the current is the sum of
iy and i2. Using this with eq. (4), we find

R
T S e
S 2 1 R

21
2 2
( S e
=i |1+ 5 (5)
o
1
Equation (5) yields
il 4
=5 =2 2
- r Gé(r =)
2 1
1+ >
L i R b o ST R
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2

SR

o 2 (6)

2
dlrl + (r (r - rl)

The current in the tubular conductor is easily found to be

2 2
Ué(rz - rl)l

i — (7)
7 R 2 2
) + L
T e )

(c) The power ratio is given by Pz/Pl = (12V2)/(1 Vl). Since the
conductors are in parallel, Vy = V,, S0 P2/P = 12} i, as was to
be shown.
22-38
(a) We represent the filament as
a cylinder of length Q and radius JZ

r, as shown at right. As pointed
out in the exercise statement, in \r
order that bulbs of various powers
all exhibit the same filament
temperature when operated at the
same voltage, the bulbs are
designed to have the same power
per unit area of filament surface.
That is, P = KS where P is the power, S is the surface area of the
filament, and K is a dimensional constant. The surface area is
given by S = 2TTr£, while the power

P:ﬁ=V20‘a= C)‘VZTJ’JC2 (1)

R K Ja

Therefore the constant is given by
2 2 2
K = g P O e S O
fme) 2

(2)

Since the bulbs are operated at the same voltage and the filaments
have the same conduct1v1ty, eq. (2) implies that r/ﬂ must be
constant: in fact, r/£ = 2K/F V2.

(b) According to eg. (1), the power ratio P2/Pl is given by
P, 0 (@vzﬂ,r§>< Jl
1 /ﬂz wv?r.fri
2
(—‘;)(g—) (3)
il
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From part (a), we know that rzzfg = rl/ﬂi, or r2/rl = (i;ﬂﬁl)2.
Inserting this into eq. (3), we find

i3 %>2 2(5_-?: %}3

which implies that.Qz/ﬁl = nl/3. The ratio of radii is r2/r1

2 2/3
=JQ2AQ% =mn -

22-39 \/
|
|

(a) The circuit is shown in the
figure at the right. The current ;
is given by i = V/(R + r). The lL

power delivered to the external
resistance R is given by

2 v°R = NW
e o R

Badl o 0 R=
ex

(R + r)2

Clearly By = 0 for R = 0 and
Pax >0 as R>02. To maximize Poyr We set
HE dpex = v2 L ! 2R
= % 2 3
R (R + 1) (R + x)

Sl =
R ——————————

(R + r)3

Therefore, the power delivered to the external resistance is
maximized for R = r, as was to be shown.

(b) For R = r, the power delivered to the external resistance is

V2 R V2 r V2
Pex = 5 ok Z;
(R + 1) (r + r}

For the same external resistance value, the total power delivered
by the battery is

Therefore the efficiency is Pex/Ptot = 50% at maximum power. [NOTE:
For a general value of R, the efficiency P.y/Protr = R/(R + 1).]

22-40

We let H denote the quantity of energy needed to bring the kettle
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to a boil. Then H = Pyt; = P,t,, where P, and P, are the powers
of the two windings, and H = Vztl/Rl = V2t2/R2, where Ry and R,
are their resistances.

(a) When the windings are connected in series, they exhibit a
reiistance Rg = Rp + R, and dissipate electrical energy at the
rate

oo

V2

(R, #+ Rz)

o
I

W|<
i

s

The time required to bring the kettle to a boil is then

H H
o +
ts P 2 (Rl RZ)
s Vv
HR HR
1 2
e e e
V2 V2 ik 2

(b) When the windings are connected in parallel, each dissipates
the power that it would if it alone were connected, so that

He: H

The time required to bring the kettle to a boil is therefore

1Y) H +. (H
P PP 1 5 [( /tl) ( /tz)]
e
+
tl t2
22-41 2 { /0
, ; . S I e
(2) The figure at the right : ‘o “
indicates the situation when the ) e
= 6.3 L 0.5k
trolley is 3.0 km from the generator | 4 00
end. In labeling the figure, we 550\ cac S
have applied Kirchoff's current Sbov“f:—'
law to the node A. (NOTE: We = (et R :
assume throughout the procblem -[
that the current through the E

trolley is 100 A, independent of

the voltage drop. This may not

be strictly true, but it is

clearly the intent of the exercise

statement that we make this assumption.) Applying Kirchoff's
voltage law to the left loop, we obtain
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-i(0.3) - (VA = VB) + 550 = 0 (1)

For the right loop, we find
—-(i - 100) (0.5) - (i - 100)(0.24) - 500

+ (VA - VB) =0 (2)

Adding egs. (1) and (2) to eliminate (VA - VB), we obtain
-0.31i - 0.74(1i - 100) + 50 =0
-1.041 = -124
J=u1 39,20 A

The current supplied by the generator is 119.2 A while the current
supplied to the battery is i - 100 = 19.2 A.

(b) Using eqg. (1) with i = 119.2 A, we find Va = Vp
= 550 - 0.3(119.2) = 514 Vv

C’ “n'ga
(c) The figure shows the situation 5 Al E—i——a
when the trolley is near the battery | AAAA”
end of the line. In labeling the + .80 0.24.0
figure, we have applied Kirchoff's EEK}V ey
current law to the node A'. Apply- SUUV-i:_
ing Kirchoff's voltage law to the 7 moﬁ
left loop, we find I
.4 ' i !
-i(0.8) - (V4 - V) + 550 = 0 8 (3)

For the right loop, Kirchoff's voltage law implies that

~(1 - 100) (0.24) - 500 + (Vi - V}) =0 (4

Adding egs. (3) and (4), we find
-0.8i' - 0.24(i' - 100) + 50 = 0
oxr
~1.04i' = -74
or

i'=71.2 2

214



The current supplied by the generator is 71.2 A. The current
supplied to the battery is i' - 100 = -28.8 A; that is, the current
supplied by the battery is 28.8 A.

(d) Using eq. (3) with i'= 71.2 A, we find VA - Vé
= 550 - 0.8(71.2) = 493 V.

(e) The figure depicts the situation :
when the trolley is at the end of ’VVW A
the line and there is no battery 8. 8L
in the circuit. Applying Kirchoff's w1 cav
voltage law around the circuit, we fé?,bbav

have -

" 1) ~
=(100)(0.8) — (W - V) B

+ 550 = 0
This implies that Vg - Vg
= 550 - 0.8(100) = 470 V. Evidently, the purpose of the battery

is to prevent the voltage across the trolley from getting too low.

22-42

We let i; denote the current in the circuit when the switch $ is
open. We let i, be the current in resistor R when the switch is
closed. The effective resistance of the pair of identical resistors
SRR = R,/2 when the switch is closed, since the two resistors
are in parallel. According to the exercise statement, we have

2

i2R=P=i2R =GR A2
e 2 o

1o 2 eff

so that
i = 12/—J2 (1)

Since the battery has constant voltage (call it V), the current
with the switch S open is

i1 = V/(x + RO) (2)

and the current with S closed is

i2 = V/(R + RO/Z) (3)

Equations (1) - (3) imply that
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v a2 1 v (4)
(R + RO) W!? (R + Ro/2)

Therefore we have
Ro

+ — =
i 2

R<1 —
.»\ir?

Sl
S0

or

<G5
B

so that R = R /1’2 .
e S S RS

22-43

Symmetry considerations imply that the current in the upper right
resistor must equal the current in the lower left resistor. (If
the polarities of A and B were

reversed, then the roles of those

two resistors would be inter- “““JMNAﬁ A AAA

changed, and the directions

L‘ [}

of the currents would change.) o 2r 74 iy
Similarly, the currents in the Sy R r lhqi B“—L—é
two resistors 2r are equal. Using : .
i i i 1 L
thzse implications of'symmetry e [——J%’
and applying Kirchoff's current ! \AAA
law to nodes A, B, and C, we can Aﬁwﬁ_ %
label the currents in the circuit r 2\

as shown at the right. Examining
the path ACB, we see that the voltage drop is

VA - VB = 11(2r) + 12r = 21lr + 12r (1)

Applying Kirchoff's law to the left loop, we obtain

s By g AU e £
11(2r) (ll 12)r 12r 0
or
—3llr + 212r =0
or
1l = 212/3 (2)
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We use this to eliminate il from eg. (1l):

X ; ; R
VA - VB = 2(212/3)r + ix = : g (3)

Using egs. (2) and (3), we can now find the equivalent resistance
of the circuit between A and B:

VA - VB ‘712r/3)

R, == — = —= =
AB 1, + 12 [(212/3) a: 12] g

22-44

As can be seen in the figure at

the right, the three wires (AC, @
AG, and AF) branching from A are
symmetrically situated and there- ﬂ G
fore must carry equal currents. .
(After all, rotating the cube

by 120° about the diagonal AB
restores the original situation.)
Clearly, the same is true of the i R »
wires EB, DB, and HB which carry N R L
current into B. Thus, if the total 5
current flowing through the S,
network from A to B is i, the D

currents in AC, AG, AF, EB, DB,

and HB are all equal to i/3. The

two wires CH and CE are symmetrically

disposed with respect to AC, so the

current in each must be l/2(iAC) = 1/2(i/3) = i/6. Similar arguments
show that the current is also i/6 in GE, GD, FD and FH. By

examining the path ACEB, we conclude that when a current i is

flowing from A to B, the voltage drop is

()

T

V. -V, = (i/3)r + (i/6)x + (i/3)r =

Sir
A B 6

Therefore the effective resistance between A and B is RAB
= (VA - VB)/i = 5r/6.
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